您的位置:首页 > 探索头条 > 正文

太阳光子到地球需要花费10几万年,但为什么光子认为只有一瞬间?

2020/7/5 4:51:20 来源:原创 浏览:

太阳光到地球需要8分钟?

我们经常听说:太阳光到地球需要8分钟。那这个时间是咋来的呢?

实际上,这个时间准确来说是8分20秒,更准确一点是8分17秒。这个结果其实很简单,就是太阳和地球之间的距离1.5亿公里,除以光的速度3*10^8m/s,就可以得到。

但是我们要知道的是太阳表面是不产生光子的,太阳向外辐射的光子其实是太阳内核产生的,实际上一个光子从产生到传播到地球,大概需要14万年的时间。那具体是咋回事呢?

太阳核聚变反应

在宇宙中有许许多多的天体,科学家把它们分类为恒星、行星、卫星等等。但实际上,分类其实也不是固定的,而是动态的。比如,冥王星曾经就是九大行星之一,后来被降级了,如今太阳系是八大行星。

分类的变化其实是科学家对于天文学的认知在发生变化。如今我们知道,在宇宙中,有一个关键因素会决定天体的分类,这个关键因素就是:质量。因此,就有了"质量为王”的说法。恒星有一个最小的质量门槛,这个门槛就是太阳质量的7%,低于这个值,就无法成为恒星,高于这个值,就可以成为恒星。

如果从本质上看,为什么高于这个质量就可以成为一颗恒星呢?

在中国有句老话叫做物极必反,就可以很好的概括这个事。我们知道,引力和质量有关,但天体的质量巨大时,引力也会非常大。就拿太阳来说,它占据了整个太阳系99.86%以上的质量,是绝对的主宰。

太阳的引力牵引着太阳系内的天体,同时也在挤压自身。如果没有任何的斥力存在,那么太阳应该会在引力的作用下收缩成一个点。但事实上,并没有。这是因为太阳在挤压自身的过程中引发了核聚变反应,核聚变产生了对外的压力,和引力形成了动态平衡。那为什么会促发核聚变反应呢?

这是因为在引力的作用下,太阳内核的温度会升高,这个温度大概可以达到1500万度。在这个温度环境下,原子结构已经无法保全了。我们知道原子是由原子核和电子构成的,在这样的环境下,电子会获得足够多的能量,摆脱原子核的束缚,开始放飞自我。因此,太阳的内核当中,其实是呈现等离子态的,原子核、电子、光子在其中到处乱串

不过,核聚变反应其实是需要原子核之间进行结合。构成太阳的主要是氢原子和氦原子,其中氢原子占大头。氢原子丢了一个电子,剩余的原子核内也只有一个质子。因此,太阳内部其实有大量的质子。质子是带正电的,同种电荷是相排斥的,只要足够大的能量才能使得两个质子结合,发生核聚变。照理说,太阳内部的温度只有1500万,而能促发两个质子发生核聚变反应的基本门槛是一亿度,因此反应本不应该发生。

不过,在微观世界当中,存在着量子隧穿效应。意思是说,即便是在宏观上不可能发生的反应,在微观世界中,也有极其低的概率发生。由于太阳足够巨大,粒子数足够多,即使再低的概率,乘以这个基数,也有可能发生。因此,反应才得以发生。最终,通过三个阶段,四个质子转化成一个氦核,并且释放出大量的能量。

这个反应其实很缓慢,并不是像原子弹那样全炸了,这才使得太阳可以持续地烧下去。在整个过程中,每3个光子的产生,同时产生2个中微子。中微子由于不参与到电磁相互作用,并且本身质量极其小,就会先奔向广阔的宇宙。

光子是参与到电磁相互作用的,由于太阳内部是等离子态。因此,光子会被困在太阳内部,跌跌撞撞地向外移动。据科学家统计,光子大概平均要花14万年的时间,才能来到太阳的表面

然后再过8分钟17秒,达到地球。不过,以上其实都是以人类的视角来看光子,那如果从光子的视角来看这件事情,它从产生那一开始到抵达地球,一共花了多少时间呢?

从光子的角度

1905年被称为爱因斯坦的奇迹年,在这一年,爱因斯坦提出了四个开创性的理论,其中就包括了狭义相对论。在狭义相对论中,爱因斯坦统一了时间和空间,他认为两者并不是分立的,两者应该结合起来看。那这样应该咋理解呢?

爱因斯坦其实是回归到了时间本身的定义。在物理学中,时间的定义是周期性的变化,说白了,时间就是一种运动。如果时间是一种运动,那时间就应该会受到运动状态的影响,处于不同运动状态的物体,感受到的时间就应该是不同的。

但一个物体相对于其他的物体的运动速度越快,它相对于对方的时间膨胀越严重,也就是说,对方看到它的时间流逝得很慢。而在宇宙中,极限速度就是光速,这就意味着,处于光速时,光子的时间相对于外界是无限膨胀的,也就是说,对于光子而言,外界都世界末日了,它这里还没有一瞬间。因此,从光子诞生,到光子达到地球,其实从光子的角度来看,几乎就是一瞬间达到的。

看看网友怎么说

道里理道1:同样的道理,因为宇宙在超光速的膨胀,所以我们觉得时间很漫长,实际上如果在另外一个宇宙的人看来,我们宇宙的爆炸膨胀收缩再爆炸……只是一瞬间的事情。

文章来源网络,版权归属原作者,未注明作者均因传阅太多无从查证。本站为公益性非盈利网站,在本网转载其他媒体稿件是为传播更多的信息,此类稿件不代表本网观点。如果本网转载的稿件涉及您的版权、名益权等问题,请尽快与我们联系,我们将第一时间处理!
  • 表面被巨型黑子覆盖!参宿四离奇变暗的原因找到了

    相信不少朋友对参宿四前段时间的骚操作都还印象深刻。这颗位于猎户座肩部的著名恒星从2019年9月开始发生快速变暗,亮度一度降至只有正常水平的三分之一左右,这种变化肉眼可见。参宿四者,红超巨星也,一颗演化至生命末期的大质量恒星,其质量约为太阳11倍,但直径却已膨胀到太阳900倍,倘若将它放在太阳的位置,

  • 大胆的想象一下,如果有外星植物,那他们会是什么颜色?

    我们生活的地球是一个绿色的星球,在它上面生长的植物大多是绿色的。许多人在科幻电影中看到过色彩丰富的外星植物,但是,肯定没有人见过真正的外星植物。你可能会想,如果有一天宇航员能在其他星球上发现植物,它们会是什么颜色?据科学家说,其他星球上的植物可能比地球上的植物颜色更丰富,比如红色、橙色和黄色,甚至是

  • 火星和地球差不多,但地球的生命,能否帮助我们,找到火星生命?

    在人类寻找宇宙其它星球生命的过程中,有一个地方看起来总是很有希望,它就是离我们比较近的火星。火星和地球一样是一颗岩石行星,围绕着同一颗恒星太阳运行,距离行星上可能存在水的地方很远。然而火星是一片贫瘠的荒地,数十亿年前火星表面上曾经有过的任何水都早已不复存在,而火星大气则是曾经可能更厚的屏障。但或者在

  • 科学家如何测量宇宙的质量?两种方法得到两种答案,科学家有点晕

    爱因斯坦告诉我们:质量和能量是可以相互转化的。这意味着,宇宙有多少质量,就有多少能量,那么,我们的宇宙到底有多少质/能量呢?对于很多天文爱好者来说,天体的直径和体积一直是他们最感兴趣的内容。比如盾牌座UY内能装下50亿颗太阳、木星的大红斑比地球还大、IC1101的直径是银河系的20多倍……不过,对于

  • 对于宇宙大爆炸,都存在哪些误解?

    广义相对论、宇宙大爆炸,你了解多少?宇宙大爆炸实际上并不大,甚至都没有“砰!”的一声。实际上,创造了宇宙和宇宙中所有事物这件事和大多数人,或者至少是非物理学家的想象相比,是非常不同的。甚至于“大爆炸”这个名字的提出,也是由于一个科学家在这个概念首次提出时便不喜欢而精心准备的一次贬低。他更倾向于接受宇

  • 哈勃拍摄到:一张很美的条形螺旋星系,距离我们才9800万光年

    在夜空深处躺着一个叫做NGC3583的条形螺旋星系,下面这张照片是由美国宇航局/欧空局哈勃太空望远镜拍摄的,这是一个带条形螺旋星系,它有两条手臂向外扭曲进入宇宙。这个星系距离银河系才9800万光年,同时有两颗超新星在这个星系中爆炸,一颗发生在1975年,另一颗发生在2015年。有几种方式可以形成超新

  • 看惯了蓝天白云?距地球810光年外的巨型恒星拥有黄色的天空

    巨大炙热的外星球有黄色的天空,而且可能会下铁雨。超热系外行星WASP-79b的艺术渲染插图,距离地球780光年。这颗行星的运行轨道非常靠近一颗比太阳热得多的恒星。这颗行星比木星还要大,它那非常朦胧的深空大气层在华氏3000度的高温下会发出咝咝的响声——(图片:NASA,ESA和L.Hustak(ST

  • 航天历史上的今天|第二颗资源三号卫星发射

    转载请注明:【文章转载自公号:中国航天科普(id:space-more)】2016年5月30日,资源三号卫星02星在太原卫星发射中心发射成功。资源三号卫星02星是一颗民用高分辨率光学传输型立体测绘卫星。作为资源三号卫星01星的后续业务星,资源三号卫星02星是我国空间基础设施规划批复后的首颗业务星,主

  • 研究发现:TRAPPIST-1中的类地行星,与恒星自转没有明显的错位

    使用斯巴鲁望远镜的天文学家已经确定:TRAPPIST-1系统中的类地行星与恒星自转没有明显的错位,这对于了解极低质量恒星周围行星系统的演化,特别是TRAPPIST-1行星的历史,包括宜居带附近的行星来说,是一个重要的发现。像太阳这样的恒星不是静止的,而是绕着一个轴旋转,当恒星表面有太阳黑子这样的特征

  • 你知道吗?世界上离地球中心最远的地方,并不是珠穆朗玛峰的峰顶

    【图1】远望钦博拉索峰。钦博拉索峰是位于厄瓜多尔安第斯山脉的一座死火山,海拔6263.47米。钦博拉索除了是厄瓜多尔最高的山峰之外,还有一个特别之处,那就是——它的峰顶是离地心最远的点,而不是很多人认为的珠穆朗玛峰的峰顶。这是由于地球是个扁圆形的球体,在赤道周围是向外隆起的。【图2】钦博拉索峰山脚下